Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells.

نویسندگان

  • Nathan J Sniadecki
  • Christopher S Chen
چکیده

Nonmuscle cells exert biomechanical forces known as traction forces on the extracellular matrix (ECM). Spatial coordination of these traction forces against the ECM is in part responsible for directing cell migration, for remodeling the surrounding tissue scaffold, and for the folds and rearrangements seen during morphogenesis. The traction forces are applied through a number of discrete adhesions between a cell and the ECM. We have developed a device consisting of an array of flexible, microfabricated posts capable of measuring these forces under an adherent cell. Functionalizing the top of each post with ECM protein allows cells to attach and spread across the tops of the posts. Deflection of the tips of the posts is proportional to cell-generated traction forces during cell migration or contraction. In this chapter, we describe the microfabrication, preparation, and experimental use of such microfabricated post array detector system (mPADs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Considerations of Micro- to Nanoscale Elastomeric Post Arrays to Study Cellular Traction Forces

Mechanical interactions between cells and their surrounding extracellular matrix (ECM) play an important role in regulating many cellular functions, such as migration, proliferation and differentiation. Cells adhere to a substrate through an integrated process that involves binding and clustering of integrins to ECM ligands, actin polymerizationdriven plasma membrane extension, and contraction ...

متن کامل

Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane.

Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells, such as cell stiffness, are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Here we reported a new whole-cell cell stiff...

متن کامل

A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response.

External forces are increasingly recognized as major regulators of cellular structure and function, yet the underlying mechanism by which cells sense forces and transduce them into intracellular biochemical signals and behavioral responses ('mechanotransduction') is largely undetermined. To aid in the mechanistic study of mechanotransduction, herein we devised a cell stretching device that allo...

متن کامل

Magnetic microposts as an approach to apply forces to living cells.

Cells respond to mechanical forces whether applied externally or generated internally via the cytoskeleton. To study the cellular response to forces separately, we applied external forces to cells via microfabricated magnetic posts containing cobalt nanowires interspersed among an array of elastomeric posts, which acted as independent sensors to cellular traction forces. A magnetic field induce...

متن کامل

Force mapping in epithelial cell migration.

We measure dynamic traction forces exerted by epithelial cells on a substrate. The force sensor is a high-density array of elastomeric microfabricated pillars that support the cells. Traction forces induced by cell migration are deduced from the measurement of the bending of these pillars and are correlated with actin localization by fluorescence microscopy. We use a multiple-particle tracking ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods in cell biology

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2007